NVIDIA Jetson Nano
NVIDIA graphics card specifications and benchmark scores
NVIDIA Jetson Nano Specifications
Jetson Nano GPU Core
Shader units and compute resources
The NVIDIA Jetson Nano GPU core specifications define its raw processing power for graphics and compute workloads. Shading units (also called CUDA cores, stream processors, or execution units depending on manufacturer) handle the parallel calculations required for rendering. TMUs (Texture Mapping Units) process texture data, while ROPs (Render Output Units) handle final pixel output. Higher shader counts generally translate to better GPU benchmark performance, especially in demanding games and 3D applications.
Jetson Nano Clock Speeds
GPU and memory frequencies
Clock speeds directly impact the Jetson Nano's performance in GPU benchmarks and real-world gaming. The base clock represents the minimum guaranteed frequency, while the boost clock indicates peak performance under optimal thermal conditions. Memory clock speed affects texture loading and frame buffer operations. The Jetson Nano by NVIDIA dynamically adjusts frequencies based on workload, temperature, and power limits to maximize performance while maintaining stability.
NVIDIA's Jetson Nano Memory
VRAM capacity and bandwidth
VRAM (Video RAM) is dedicated memory for storing textures, frame buffers, and shader data. The Jetson Nano's memory capacity determines how well it handles high-resolution textures and multiple displays. Memory bandwidth, measured in GB/s, affects how quickly data moves between the GPU and VRAM. Higher bandwidth improves performance in memory-intensive scenarios like 4K gaming. The memory bus width and type (GDDR6, GDDR6X, HBM) significantly influence overall GPU benchmark scores.
Jetson Nano by NVIDIA Cache
On-chip cache hierarchy
On-chip cache provides ultra-fast data access for the Jetson Nano, reducing the need to fetch data from slower VRAM. L1 and L2 caches store frequently accessed data close to the compute units. AMD's Infinity Cache (L3) dramatically increases effective bandwidth, improving GPU benchmark performance without requiring wider memory buses. Larger cache sizes help maintain high frame rates in memory-bound scenarios and reduce power consumption by minimizing VRAM accesses.
Jetson Nano Theoretical Performance
Compute and fill rates
Theoretical performance metrics provide a baseline for comparing the NVIDIA Jetson Nano against other graphics cards. FP32 (single-precision) performance, measured in TFLOPS, indicates compute capability for gaming and general GPU workloads. FP64 (double-precision) matters for scientific computing. Pixel and texture fill rates determine how quickly the GPU can render complex scenes. While real-world GPU benchmark results depend on many factors, these specifications help predict relative performance levels.
Maxwell 2.0 Architecture & Process
Manufacturing and design details
The NVIDIA Jetson Nano is built on NVIDIA's Maxwell 2.0 architecture, which defines how the GPU processes graphics and compute workloads. The manufacturing process node affects power efficiency, thermal characteristics, and maximum clock speeds. Smaller process nodes pack more transistors into the same die area, enabling higher performance per watt. Understanding the architecture helps predict how the Jetson Nano will perform in GPU benchmarks compared to previous generations.
NVIDIA's Jetson Nano Power & Thermal
TDP and power requirements
Power specifications for the NVIDIA Jetson Nano determine PSU requirements and thermal management needs. TDP (Thermal Design Power) indicates the heat output under typical loads, guiding cooler selection. Power connector requirements ensure adequate power delivery for stable operation during demanding GPU benchmarks. The suggested PSU wattage accounts for the entire system, not just the graphics card. Efficient power delivery enables the Jetson Nano to maintain boost clocks without throttling.
Jetson Nano by NVIDIA Physical & Connectivity
Dimensions and outputs
Physical dimensions of the NVIDIA Jetson Nano are critical for case compatibility. Card length, height, and slot width determine whether it fits in your chassis. The PCIe interface version affects bandwidth for communication with the CPU. Display outputs define monitor connectivity options, with modern cards supporting multiple high-resolution displays simultaneously. Verify these specifications against your case and motherboard before purchasing to ensure a proper fit.
NVIDIA API Support
Graphics and compute APIs
API support determines which games and applications can fully utilize the NVIDIA Jetson Nano. DirectX 12 Ultimate enables advanced features like ray tracing and variable rate shading. Vulkan provides cross-platform graphics capabilities with low-level hardware access. OpenGL remains important for professional applications and older games. CUDA (NVIDIA) and OpenCL enable GPU compute for video editing, 3D rendering, and scientific applications. Higher API versions unlock newer graphical features in GPU benchmarks and games.
Jetson Nano Product Information
Release and pricing details
The NVIDIA Jetson Nano is manufactured by NVIDIA as part of their graphics card lineup. Release date and launch pricing provide context for comparing GPU benchmark results with competing products from the same era. Understanding the product lifecycle helps evaluate whether the Jetson Nano by NVIDIA represents good value at current market prices. Predecessor and successor information aids in tracking generational improvements and planning future upgrades.
Jetson Nano Benchmark Scores
No benchmark data available for this GPU.
About NVIDIA Jetson Nano
The NVIDIA Jetson Nano, with its 4GB LPDDR4 memory and energy-efficient 10W TDP, excels in professional workloads demanding compact, high-performance computing solutions, particularly in edge AI and robotics where real-time inference and low latency are critical. Its Maxwell 2.0 architecture, while dated by desktop standards, leverages 128 CUDA cores to accelerate compute tasks like lightweight 3D rendering or parallel processing workflows, making it a viable option for prototyping visualization pipelines in resource-constrained environments. As part of NVIDIA’s certified Jetson ecosystem, this compact module meets rigorous professional standards for embedded systems, ensuring compatibility with enterprise-grade AI frameworks and developer tools that streamline deployment in industrial automation or smart IoT infrastructure. The Jetson Nano developer kit, priced at $99, provides a cost-effective entry point for businesses integrating GPU-accelerated computing into edge devices, supported by PCIe 2.0 x4 scalability and a software stack optimized for machine learning and computer vision applications.
The AMD Equivalent of Jetson Nano
Looking for a similar graphics card from AMD? The AMD Radeon RX 7700 offers comparable performance and features in the AMD lineup.
Popular NVIDIA Jetson Nano Comparisons
See how the Jetson Nano stacks up against similar graphics cards from the same generation and competing brands.
Compare Jetson Nano with Other GPUs
Select another GPU to compare specifications and benchmarks side-by-side.
Browse GPUs